
number of moles as a result of dissociation. In Eq. (26), the degree of dissociation of 
both first-order and second-order reactions is taken. 

In addition, all the gas-dynamic functions include the quantities rl, uJ, ~cr, and R/ll, 
depending also on the degree of dissociation, l~e desired quantities are greatly influenced 
by the effective isobaric specific heat Cpef, which is high in dissociating gases. Then, it 
must be noted that the quantity k T - i/k T appearing in all the expressions for the gas-dyna- 
mic functions, according to Eq. (12), depends also on Cpef, R/ll, and w. 

Thus, these considerations indicate, with great reliability, that the thermophysical 
and chemical properties of dissociating gases have a great influence on the gas-dynamic 
functions obtained. 
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TWO METHODS OF CALCULATING THE VELOCITY PROFILE OF A NON-NEWTONIAN 

LIQUID IN CYLINDRICAL CHANNELS OF ARBITRARY CROSS SECTION 

Yu. G. Nazmeev, G. R. Khalitova, 
and E. K. Vachagina 

UDC 678.532.135 

Two approaches to solving the problem of the flow of non-Newtonian liquid in cyl- 
indrical channels of arbitrary cross section are analyzed: variational and itera- 
tive approaches. 

Formulation of the Problem 

In the hydromechanis of non-Newtonian liquid, the problem of the velocity distribution 
in laminar steady flow in cylindrical singly connected channels of arbitrary cross section 
is known to be very interesting and of great practical importance. 

The system of motion and continuity describing the given problem may be written in the 

form 

av 
- o  

az 

with the boundary condition 

VIr  = O, 

where the second invariant of the deformation-rate tensor is 

- - -  c o n s t ,  (i) 

(2) 

(3) 
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It is well known that an "explicit" solution of the problem in Eqs. (1)-(3) with an 
arbitrary general ~:(12) does not exist. It is also known [i, 2] that the solution of the 
given problem, which consists in finding the real velocity field, is equivalent, on the 
basis of the law of mechanical-energy conservation, to determining the minimum of the func- 
tional 

Is 

.... i ~ I F (V) = ~,~jj ? C dTjdZ" ,,I ~ (~) dE + 2 az ,, ,,. Vd:,,,,,Jz~. (5) 

~2 0 P. 

Variational principles with subsequent numerical realization are usually used to find 
the function ensuring a minimum of the functional in Eq. (5). A brief analysis of the solu- 
tion in the variational formulation follows. 

Variational Method 

In [3, 4], the problem in Eqs. (1)-(3) was considered for two regions: a rectanale and 
an ellipse. For a rectangular channel with sides 2a and 2b, the function realizing an ex- 
tremeum of the functional in Eq. (5) is 

2 q 
V = (a 2 - -  7,~) (b'-' - -  y,~) (A 1 + A~%~ § Aa%~ + . .  �9 § A~%~ * ,%2" ), ( 6 )  

and for an elliptical channel with axes 2a and 2b 

-= �9 , ,~%, %2-). (7) 
a2 b e / 

The coefficients A n are found from the condition of a minimum of the functional in Eq. 
(5) using the Ritz method 

OF (W) _ 2 ~t (12) 0~1 O~:OA,, a%2 Ox2OA~ dz, dTa 47 . . . .  OA. Oz ~ dxld%z 0 (n = 1, 2, , m). 
" ~ ( 8 )  

After calculation of the integrand and the appropriate transformations, Eq. (8) is 
written in the form of a system of nonlinear equations in An, where, by analogy with [3, 4], 
m = 5 is assumed 

OP Ei AIOl1 ,-~ A~O!z ,+ AaO:3 + A~O,~ -b A.~Oj~ + - ~ z  -= 0, 

A1021 -- A~(~22 -1- AaO-:a -~- Az, O2a -~- As@o~ q- OP E2 = O. 
. . . .  0z 

OP 
AaOaa _ A~@a, a - -  Aa@aa q- A~Oa~ + AsOa5 -~- --~---e Ea = 0, (9) 

Here 

A1051 -:- A20~2 47 Aa@s3 § A~Os~ -+- AsO~s -~- OP O. 0--Z E5 =- 

T0V 
~a -Q 

9nm(Xl, X2) is the result of calculating the expression parentheses in the first integral 
in Eq. (8). After integration ~nm(X1, X2) and E n will have a specific algebraic form for 
each region. 

The system in Eq. (9) is solved by a Gaussian iterative method; repeated Gaussian 
quadrature is used to calculate ~nm" 

In contrast to [3, 4], the specific dependence chosen is the generalized Kutateladze-- 
Khabakhpasheva rheological model [5] for a structurally viscous non-Newtonian liquid d~, = 
-~ndT, in the particular form 
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m, --: exp (-- ~,) ,  ( i0) 

where ~. -(q~--(t)/(~=--%); ~, = : :@(~- -~ ) / (~ - -%) ;  ~: I/p(~) is the viscosity of the liquid. 

In realizing the variational approach, Eq. (9) is iinearized in the first step of the 
calculation, by assigning some value ~* = const to u(Ii). Then A n and V are determined in 
the first approximation. After calculating Eq. (4) and the effective viscosity from Eq. 
(i0) or in the form of a power series [3, 4], 0nm is again calculated. Thus, at each step 
of the calculation, Eq. (9) is linearized. It is completely obvious that, regardless of 
the form of rheological model, the Newtonian viscosity -- usually ~o or correspondingly ~o -- 
is specified as the first approximation. The velocity profile is Newtonian in the first 
step of the calculation. If the series of solutions of Eq. (9) then tends to some limit, 
this limit is the solution of Eq. (9) and of the problem. 

Solution of Eqs. (1)-(3) in the variational formulation may be realized on a computer 
and has fair convergence. For example, in calculating a flow of model liquid obeying rheo- 
logica ! Eq. (i0) with the parameters ~ = 0.1981 (Pam.sec) -I, ~o = 1.9 (Pc'set) -~, ~ = 13.7 
(Pa.sec) -~, r~= 0in a rectangular channel with sides 2a = 0.180 m and 2b = 0.015 m with 
~P/~z = 600 N/m 3, 40 iterations are required to reach a difference I(~ -- A~-I)/~I = E = 
i0 -~ . 

The case of flow of the same model liquid with ZP/~z = 600 N/m 3 in a semicircular 
channel with R = 0.006 m has also been considered. To reach the same error c, 36 iterations 
are required. In view of the lack of symmetry with respect to the axis • the basis func- 
tion is written in the form 

_ _  A 2 A ~ A 2 4 . . .  A ~ y~ 

A basic and very serious deficiency of the variational approach is the complexity of 
the choice of basis function for regions with partial symmetry -- for example, semicircles -- 
or no symmetry at all. For such regions, as a rule, it is possible to construct several 
variants of the basis function with subsequent testing by calculation. In addition, the 
total or partial lack of symmetry leads to increase in the number of equations in Eq. (9) 
(for a semicircle, the minimum set is m = 9). 

A method of solving Eqs. (1)-(3) which is free from these deficiencies and converges 

as rapidly is proposed below. 

Iterative Method 

In [6] the approach suggested for solving Eqs. (1)-(3) was to replace the shear-stress 

components by the expressions 

b(t2 ) aV __ l ~P OU , ~t(I~) aV l a P  OU (12) 
OX1 2 az ~X~ 0%2 2 az 0%~ 

Substituting Eq. (12) into the initial nonlinear Eq. (I) gives a linearized result, in the 

form of the Poisson equation 
a~U ~U 

. . . .  9, (13) as + 

by means of which, after substituting Eq. (12) into Eq. (10), an expression is found for 

determining the velocity field. 

Since Eq. (13) describes the torsion of prismatic rods, the mathematical apparatus of 
torsion theory is used to find the velocity field in a prismatic channel. 

It is obvious that reducing the initial Eq. (i) to Eq. (13) by means of Eq. (12) is 
correct in the case of flow of non-Newtonian liquid only for some symmetric regions: circles 
and strips. In other cases, this approach will describe the Newtonian velocity distribution 

[7]. 

In the proposed iterative approach, the substitution in Eq. (12) must be regarded as 
the first step of the iteration (the first approximation), in which the Newtonian viscosity 

(XI, Xi) is calculated using the rheological model in Eq. (i0) or any other. In this 
case, the shear stress in Eq. (i0) will take the form 

op i/ ou + f (14) 
T 
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Replacing the derivatives in Eq. (12) by difference analogs, the matrix Y~j describing 
a Newtonian velocity distribution is obtained in the first approximation 

V ]  1 OP "~"t Uz ,  ~ I ~_~i VU_ ~ h~h.~ . (15) 

~: =: * (%~, 72) Oz .~,~. "" /q ~ h., h~ -+ h.~ 

A f t e r  c a l c u l a t i n g  vk j  i n  t h e  f i r s t  s t e p  o f  t h e  i t e r a t i o n  (k = 1 ) ,  ~*(X~, X*) i s  a g a i n  
c a l c u l a t e d  u s i n g  Eq. (10 ) ]  i n  which  t h e  s h e a r  s t r e s s  i s  d e t e r m i n e d  as  

and in view of the implicit expression for the effective viscosity (consistency), the method 
of simple iteration is used to solve Eq. (I0). 

After calculating ~(I:), like ~*(Xx, X:), in the first step of the iteration, Eq. (i) 
is written in the form 

6Z, 

or  u s i n g  d i f f e r e n c e  o p e r a t o r s  

a ~ .  07~= \ Oz 

A~Y -F A~Y . . . .  
OP 

Oz 
(ZT) 

where haY = * �9 (~ Yxa)• a = i, 2; YYh = 0. 

The iterativescheme of the variable-directionmethod (BDM) [8] is used to solve Eq. (17); 

(18) 

in the present case, it takes the form 

y~+ ~ / ~ __ y~ 

-~(t) 

y h + l  __ y~ +~ /2  

T(2) 

OP 

Oz 

OP 

Oz 
= A Y  ~-'-~i~ + A~Y ~:-~-~ -f-- 

Each equation of the system in Eq. (18) is solved by the fitting method [9]; for the 
first equation of the system, the fitting coefficients are calculated in the form 

~ + ~ / 2  ~ + ~ i  ~ ~ /  
, .~i - -  2h~ ' 

. . . . .  �9 , * ~p 

2h~ i ~c" 1) 2h~ . ~, z 

and for the second equation in the form 

A~+~ _ ,~v -!- ~ J - ~  

rh..+l ~ti]-3;-~i_l/ . . k ~ l , / 2 ~ . [  / 1 ,.ti.-!i--i-2Lu~/ ~t i-- l /  "/ykd-l,.'2 ~i.-~l/~-,Lti] yh-}-l/2 OP 
-" = 2h~ r,-.,: ' ~ ~r 2h~ ] " + -J~ '+': + ~z 

The iterative parameters T (I) and T (2) are chosen so that the number of iterations is a 

minimum and is 
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Fig. I. Enlarged block diagram of the numerical solu- 
tion of the problem in an iterative formulation: I) speci- 
fication of initial data; 2) calculation of the matrices 
~U/~x, and ~U/3x2 ; 3) calculation of r from Eq. (14); 
4) calculation of ~ from Eq. (I0); 5) calculation of Vlj; 
6) calculation of ~ from Eqs. (i0) and (16); 7) solution 
of Eq. (17) by iterative VDM; 8) if I(V k+1 -- vk)/vk I < ~, 
return to 6; otherwise, proceed to 9; 9) print matrices 
V, ~V/~x~, ~V/~xa. 

q5 

O 
a 

Fig. 2. 

~,o q5 o 0,5 r 

o qes o,5o o,7~-- • 

Theoretical dimensionless velocity profiles: 
a) rectangular channel in a cross section with respect 
to the symmetry axis (i) and in a diagonal cross section 
(2); ~ is a dimensionless diagonal coordinate; b) semi- 
circular channel in the radial cross section B--B (i) and 
in cross section A--A (2); ~ is the dimensionless coor- 
dinate in cross section A--A. 

1 4 
n (e) ~ in - -  In --!-4, 

~2 8 ~q 

where 

1--t. t= "/ (A,--61)(&--6~) 

H e r e  t h e  b o u n d a r i e s  6 a ,  A a o f  t h e  o p e r a t o r s  A a a r e  

4 , ~h~ 
6~ = ~ sin ~ ~h-----z-~ A~ = ~ cos ~- -, ~ = 1, 2, fl (0 ~ X~ - ~  l~). 

2l~ ' h~ 2l~ 

The formulas for determining the optimal values of the iterative parameters ~(~) and 
T (a) were described in detail in [8]. 

After calculating Vk(xI, X2) from Eqs. (17) and (18) in the second (k = 2) step of 
the iteration ~*(X~, Xa) is calculated again using Eq. (16). After determining P*(XI, X2) 
Eq. (17) is again realized. The process is repeated until I(V k+: -- vk)/vk I = e = const. An 
enlarged block diagram of the solution is shown in Fig. i. 
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This iterative process is analogous to that used in [i0], where its convergence was 
investigated and proven. 

Theoretical dimensionless velocity profiles with flow of the same non-Newtonian liquid 
in rectangular and semicircular channels are shown in Fig. 2. For a rectangular channel, U 
takes the form 

32 1 /~L~tXt n5%~2 
U - -  ~ , '  ~ , '  sin sin 

m = 1 , 3  . . . .  n = l , 3  . . . .  1!111 _ _ _  _2_ t'1"~ 
, 0 ,  2 

for a semicircular channel 

where 

U = - -  r'-' sia ~ r i+ ~ ]  G r "  sin ~ ,  
n : : 1 , 3 , 5  

n ( n - -  2) (n q 2~' X2 

To solve the problem in an iterative formulation, 27 iterations are required for a 
rectangular region and 22 for a semicircle (~ = 10-4). 

For a rectangular channel, in addition to the cross section with respect to the sym- 
metry axis, velocity profiles in a diagonal cross section are plotted, showing the presence 
and character of the "Stagnant" zones in the corners of the channel. 

The velocity profiles in Fig. 2 are identical for the two methods. 

The analysis of the calculation process shows that the form of the rheological model 
and the value of the axial pressure gradient -- the free term in Eq. (18) --have no influence 
of the rate of convergence. For example, in solving the problem by the two methods but with 
a rheological model in the form of a power series [3], the same number of iterations is per- 
formed. However, the analysis also shows that the rate of convergence is influenced by the 
ratio q~/~p0; for a specific error E, the number of iterations n(e) increases with increase 
in this ratio. 

Thus, comparison of two methods of solving Eqs. (1)-(3) leads to the conclusion that 
the algorithm for numerical realization of the problem by the iterative method is less cum- 
bersome that the variational algorithm and offers higher rates of convergence with less 
demand for computation time. This is associated with the obvious fact that finding the New- 
tonian velocity distribution in the first step of the iteration using the substitution in 
Eq. (12) is considerably simpler than solving Eq. (9). 

But the basic advantage of the iterative method, in our view, is that there is no need 
to construct the basis function of the variational method, which is very complex for most 
regions. In contrast to the basis function, the function U is well known for practically 
any singly connected region from the theory of prismatic-rod torsion. 

NOTATION 

X:, X2, z, current coordinates; ~, effective viscosity of non-Newtonian liquid; 12, 
second invariant of deformation-rate tensor; ~P/3z, axial pressure gradient; V, flow rate; 
~, region with boundary F; a, b, half the sides of the rectangle or semiaxes of the ellipse; 
A n , coefficients of the series; x, y, exponents; ~, consistency of non-Newtonian liquid; 
~o, q ~ ,  consistency as T ~ 0 and z + ~; ~, shear stress; ~XI' ~X2' components of shear stress; e, 
~, index and limit of stability of the macrostructure of the non-Newtonian liquid; k, number 
of iteration; e, error of iterative process; R, radius of circle; U, auxiliary function, 
the solution of the Dirichlet problem for the Poisson equation; h+, h=, grid steps along 
the axes X: and • Yh, set of boundary grid points; difference analog of the velocity 
V; Aa, difference analo__g of the derivatives; T (~), r (~I. iterative parameters; A, B, C, F, 
fitting coefficients; V, mean-flow-rate velocity of the flow; ~, dimensionless coordinate 
in diagonal cross section, section A--A or x/a, y/b; i, j, numbers of difference-grid points; 
k + 1/2, intermediate iteration (subiteration); n(E), minimum number of iterations to reach 
the required error m; 6~, As, boundaries of the operators Aa; ~a, boundaries of the regions 
in the directions Xt and X=. 
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